domingo, 19 de agosto de 2012

Cilindro


Cilindro Circular 
Sejam α e β dois planos paralelos distintos, uma reta s secante a esses planos e um círculo C de centro O contido em α. Consideremos todos os segmentos de reta, paralelos a s, de modo que cada um deles tenha um extremo pertencente ao círculo C e o outro extremo pertencente a β.
A reunião de todos esses segmentos de reta é um sólido chamado de cilindro circular, limitado de bases C e C’ ou simplesmente cilindro circular.

Cilindro circular reto

No cilindro circular reto a geratriz forma com o plano da base um ângulo de 90º. No cilindro circular reto a medida h de uma geratriz é a altura do cilindro.


O cilindro circular reto também é conhecido por cilindro de revolução, pois pode ser obtido pela revolução de 360º de uma região retangular em torno de um eixo.
Cilindro equilátero

O cilindro que possui as seções meridianas quadradas é chamado de cilindro equilátero.
No cilindro equilátero a altura é igual ao diâmetro da base: h = 2r.
Área Lateral e Área total de um cilindro circular reto

A superfície de um cilindro reto de altura h e raio da base r é equivalente à reunião de uma região retangular, de lados 2πr e h, com dois círculos de raio r. Observe a planificação do cilindro.

A área do retângulo equivalente à superfície lateral do cilindro é a área lateral Aℓ do cilindro, ou seja:

Aℓ = 2*π*r*h

A área total At do cilindro é igual à soma da área lateral Aℓ com as áreas das duas bases, ou seja:

At = 2*π*r*h + π*r2 + π*r2 → At = 2*π*r*h + 2π*r2 


Volume do cilindro circular

O volume V de um cilindro circular de altura h e raio da base r é igual ao produto da área da base, πr2, pela altura h, isto é:

V = π*r2*h 

Nenhum comentário:

Postar um comentário